Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Am J Chin Med ; 51(3): 651-676, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2269325

RESUMEN

Pulmonary fibrosis (PF) is a progressive pulmonary disease with no effective treatment and high mortality. Resveratrol has shown promising benefits in the treatment of PF. However, the probable efficacy and underlying mechanism of resveratrol in PF treatment remain unclear. This study investigates the intervention effects and potential mechanisms underpinning the treatment of PF with resveratrol. The histopathological analysis of lung tissues in PF rats showed that resveratrol improved collagen deposition and reduced inflammation. Resveratrol decreased the levels of collagen, glutathione, superoxide dismutase, myeloperoxidase, and hydroxyproline, lowered total anti-oxidant capacity, and suppressed the migration of TGF-[Formula: see text]1 and LPS-induced 3T6 fibroblasts. With resveratrol intervention, the protein and RNA expressions of TGF-[Formula: see text]1, a-SMA, Smad3/4, p-Smad3/4, CTGF, and p-ERK1/2 were markedly downregulated. Similarly, the protein and RNA expression levels of Col-1 and Col-3 were significantly downregulated. However, Smad7 and ERK1/2 were evidently upregulated. The protein and mRNA expression levels of TGF-[Formula: see text], Smad, and p-ERK correlated positively with the lung index, while the protein and mRNA expression levels of ERK correlated negatively with the lung index. These results reveal that resveratrol may have therapeutic effects on PF by reducing collagen deposition, oxidation, and inflammation. The mechanism is associated with the regulation of the TGF-[Formula: see text]/Smad/ERK signaling pathway.


Asunto(s)
Fibrosis Pulmonar , Ratas , Animales , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Inflamación , ARN Mensajero , ARN/efectos adversos
2.
Pharmacol Rev ; 72(4): 862-898, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-767668

RESUMEN

RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.


Asunto(s)
ARN/efectos de los fármacos , ARN/farmacología , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/uso terapéutico , Betacoronavirus , COVID-19 , Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Infecciones por Coronavirus/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Desarrollo de Medicamentos/organización & administración , Descubrimiento de Drogas , Humanos , MicroARNs/farmacología , MicroARNs/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Pandemias , Neumonía Viral/tratamiento farmacológico , ARN/efectos adversos , ARN sin Sentido/farmacología , ARN sin Sentido/uso terapéutico , ARN Guía de Kinetoplastida/farmacología , ARN Guía de Kinetoplastida/uso terapéutico , ARN Mensajero/efectos de los fármacos , ARN Mensajero/farmacología , ARN Ribosómico/efectos de los fármacos , ARN Ribosómico/farmacología , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , ARN Viral/efectos de los fármacos , Ribonucleasas/metabolismo , Riboswitch/efectos de los fármacos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA